skip to main content


Search for: All records

Creators/Authors contains: "Ducklow, Hugh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 15, 2024
  2. The Antarctic marine environment is a dynamic ecosystem where microorganisms play an important role in key biogeochemical cycles. Despite the role that microbes play in this ecosystem, little is known about the genetic and metabolic diversity of Antarctic marine microbes. In this study we leveraged DNA samples collected by the Palmer Long Term Ecological Research (LTER) project to sequence shotgun metagenomes of 48 key samples collected across the marine ecosystem of the western Antarctic Peninsula (wAP). We developed an in silico metagenomics pipeline (iMAGine) for processing metagenomic data and constructing metagenome-assembled genomes (MAGs), identifying a diverse genomic repertoire related to the carbon, sulfur, and nitrogen cycles. A novel analytical approach based on gene coverage was used to understand the differences in microbial community functions across depth and region. Our results showed that microbial community functions were partitioned based on depth. Bacterial members harbored diverse genes for carbohydrate transformation, indicating the availability of processes to convert complex carbons into simpler bioavailable forms. We generated 137 dereplicated MAGs giving us a new perspective on the role of prokaryotes in the coastal wAP. In particular, the presence of mixotrophic prokaryotes capable of autotrophic and heterotrophic lifestyles indicated a metabolically flexible community, which we hypothesize enables survival under rapidly changing conditions. Overall, the study identified key microbial community functions and created a valuable sequence library collection for future Antarctic genomics research. 
    more » « less
    Free, publicly-accessible full text available May 18, 2024
  3. abstract

    The marine coastal region makes up just 10% of the total area of the global ocean but contributes nearly 20% of its total primary production and over 80% of fisheries landings. Unicellular phytoplankton dominate primary production. Climate variability has had impacts on various marine ecosystems, but most sites are just approaching the age at which ecological responses to longer term, unidirectional climate trends might be distinguished. All five marine pelagic sites in the US Long Term Ecological Research (LTER) network are experiencing warming trends in surface air temperature. The marine physical system is responding at all sites with increasing mixed layer temperatures and decreasing depth and with declining sea ice cover at the two polar sites. Their ecological responses are more varied. Some sites show multiple population or ecosystem changes, whereas, at others, changes have not been detected, either because more time is needed or because they are not being measured.

     
    more » « less
  4. Abstract. Heterotrophic marine bacteria utilize organic carbon for growth and biomass synthesis. Thus, their physiological variability is key to the balancebetween the production and consumption of organic matter and ultimately particle export in the ocean. Here we investigate a potential link betweenbacterial traits and ecosystem functions in the rapidly warming West Antarctic Peninsula (WAP) region based on a bacteria-oriented ecosystemmodel. Using a data assimilation scheme, we utilize the observations of bacterial groups with different physiological traits to constrain thegroup-specific bacterial ecosystem functions in the model. We then examine the association of the modeled bacterial and other key ecosystemfunctions with eight recurrent modes representative of different bacterial taxonomic traits. Both taxonomic and physiological traits reflect thevariability in bacterial carbon demand, net primary production, and particle sinking flux. Numerical experiments under perturbed climate conditionsdemonstrate a potential shift from low nucleic acid bacteria to high nucleic acid bacteria-dominated communities in the coastal WAP. Our studysuggests that bacterial diversity via different taxonomic and physiological traits can guide the modeling of the polar marine ecosystem functionsunder climate change. 
    more » « less
  5. Abstract. The West Antarctic Peninsula (WAP) is a rapidly warming region, withsubstantial ecological and biogeochemical responses to the observed changeand variability for the past decades, revealed by multi-decadal observationsfrom the Palmer Antarctica Long-Term Ecological Research (LTER) program. Thewealth of these long-term observations provides an important resource forecosystem modeling, but there has been a lack of focus on the developmentof numerical models that simulate time-evolving plankton dynamics over theaustral growth season along the coastal WAP. Here, we introduce aone-dimensional variational data assimilation planktonic ecosystem model (i.e., theWAP-1D-VAR v1.0 model) equipped with a modelparameter optimization scheme. We first demonstrate the modified and newlyadded model schemes to the pre-existing food web and biogeochemicalcomponents of the other ecosystem models that WAP-1D-VAR model was adaptedfrom, including diagnostic sea-ice forcing and trophic interactions specificto the WAP region. We then present the results from model experiments wherewe assimilate 11 different data types from an example Palmer LTER growthseason (October 2002–March 2003) directly related to corresponding modelstate variables and flows between these variables. The iterative dataassimilation procedure reduces the misfits between observationsand model results by 58 %, compared to before optimization, via an optimized set of12 parameters out of a total of 72 free parameters. The optimized model resultscapture key WAP ecological features, such as blooms during seasonal sea-iceretreat, the lack of macronutrient limitation, and modeled variables andflows comparable to other studies in the WAP region, as well as severalimportant ecosystem metrics. One exception is that the model slightlyunderestimates particle export flux, for which we discuss potentialunderlying reasons. The data assimilation scheme of the WAP-1D-VAR modelenables the available observational data to constrain previously poorlyunderstood processes, including the partitioning of primary production bydifferent phytoplankton groups, the optimal chlorophyll-to-carbon ratio ofthe WAP phytoplankton community, and the partitioning of dissolved organiccarbon pools with different lability. The WAP-1D-VAR model can besuccessfully employed to link the snapshots collected by the available datasets together to explain and understand the observed dynamics along thecoastal WAP. 
    more » « less
  6. null (Ed.)
  7. Abstract

    Since the middle of the past century, the Western Antarctic Peninsula has warmed rapidly with a significant loss of sea ice but the impacts on plankton biodiversity and carbon cycling remain an open question. Here, using a 5-year dataset of eukaryotic plankton DNA metabarcoding, we assess changes in biodiversity and net community production in this region. Our results show that sea-ice extent is a dominant factor influencing eukaryotic plankton community composition, biodiversity, and net community production. Species richness and evenness decline with an increase in sea surface temperature (SST). In regions with low SST and shallow mixed layers, the community was dominated by a diverse assemblage of diatoms and dinoflagellates. Conversely, less diverse plankton assemblages were observed in waters with higher SST and/or deep mixed layers when sea ice extent was lower. A genetic programming machine-learning model explained up to 80% of the net community production variability at the Western Antarctic Peninsula. Among the biological explanatory variables, the sea-ice environment associated plankton assemblage is the best predictor of net community production. We conclude that eukaryotic plankton diversity and carbon cycling at the Western Antarctic Peninsula are strongly linked to sea-ice conditions.

     
    more » « less